AVIS-IBIS

Birds of Indian Subcontinent

Factors Affecting Chick Provisioning by Caspian Terns Nesting in the Columbia River Estuary

Publication Type:Journal Article
Year of Publication:2005
Authors:Anderson, SK, ROBY, DANIELD, Lyons, DE, Collis, K
Journal:Waterbirds
Volume:28
Issue:1
Date Published:2005
ISBN Number:1524-4695
Keywords:Hydroprogne, Hydroprogne caspia, Laridae, Sterna, Sterna caspia
Abstract:Abstract We investigated factors affecting chick provisioning by radio-tagged Caspian Terns (Sterna caspia) nesting in a large colony on East Sand Island in the Columbia River estuary during 2001. Caspian Tern predation on juvenile salmonids (Oncorhynchus spp.) in the estuary prompted resource managers to relocate ca. 9,000 pairs of terns nesting on Rice Island (river km 34) to East Sand Island (river km 8), where terns were expected to consume fewer salmonids in favor of marine forage fishes. This study investigated factors influencing foraging success, diet composition, and overall reproductive success at the managed Caspian Tern colony. Our results indicated that daytime colony attendance by nesting terns averaged 64% and decreased throughout the chick-rearing period, while duration of foraging trips averaged 47 min and increased during the same period; these seasonal changes were more strongly related to date than chick age. Average meal delivery rates to 2-chick broods (0.88 meals h-1) were 2.6 times greater than to 1-chick broods (0.33 meals h-1). Parents delivered more juvenile salmonids to chicks during ebb tides than flood tides, but meal delivery rates to the nest remained constant, suggesting diet composition tracks relative availability of prey species. Foraging trips resulting in delivery of juvenile salmonids averaged 68% longer than foraging trips for schooling marine forage fishes, indicating higher availability of marine prey near the colony. High availability of marine forage fish in the Columbia River estuary during 2001 was apparently responsible for high colony attendance, short foraging trips, high chick meal delivery rates, and high nesting success of Caspian Terns on East Sand Island.Abstract We investigated factors affecting chick provisioning by radio-tagged Caspian Terns (Sterna caspia) nesting in a large colony on East Sand Island in the Columbia River estuary during 2001. Caspian Tern predation on juvenile salmonids (Oncorhynchus spp.) in the estuary prompted resource managers to relocate ca. 9,000 pairs of terns nesting on Rice Island (river km 34) to East Sand Island (river km 8), where terns were expected to consume fewer salmonids in favor of marine forage fishes. This study investigated factors influencing foraging success, diet composition, and overall reproductive success at the managed Caspian Tern colony. Our results indicated that daytime colony attendance by nesting terns averaged 64% and decreased throughout the chick-rearing period, while duration of foraging trips averaged 47 min and increased during the same period; these seasonal changes were more strongly related to date than chick age. Average meal delivery rates to 2-chick broods (0.88 meals h-1) were 2.6 times greater than to 1-chick broods (0.33 meals h-1). Parents delivered more juvenile salmonids to chicks during ebb tides than flood tides, but meal delivery rates to the nest remained constant, suggesting diet composition tracks relative availability of prey species. Foraging trips resulting in delivery of juvenile salmonids averaged 68% longer than foraging trips for schooling marine forage fishes, indicating higher availability of marine prey near the colony. High availability of marine forage fish in the Columbia River estuary during 2001 was apparently responsible for high colony attendance, short foraging trips, high chick meal delivery rates, and high nesting success of Caspian Terns on East Sand Island.
URL:http://dx.doi.org/10.1675/1524-4695(2005)028[0095:FACPBC]2.0.CO;2
Short Title:Waterbirds
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith